Smart Mobility Robot: Employing Line Follower Navigation for Object Movement

 

Introduction

The advancement of robotics technology has grownin recent years, offering substantial potential  across  various  industrial  sectors.  One  prominent  application  area  is  logistics, where robotic systems can play a vital role in automating material handling processes to improve operational efficiency and reduce human labor. Despite this progress, challenges remain in achieving improved accuracy, speed, and load-handling capabilities. Among the available  robotic  solutions,  the  line  follower  robot  stands  out  as  a simple  yet  effective approach for automating transportation tasks. Designed follower robots have been widely implemented in industrial settings due to their low cost, ease of deployment, and relatively simple control systems. 

The selection of a line follower robot in this study is driven by several considerations. First, the technology offers simplicity  and  efficiency,  making  it  well-suited  for  small-to  medium-scale  logistics operations.  Second,  it  is  cost-effective  and  composed  of  affordable  components,  which supports its use in resource-constrained environments. Third, it offers flexibility; route modifications  can  be  achieved  by  reprogramming  or  physically  altering  the  track.  Lastly, the  architecture  is  scalable,  allowing  for  future  upgrades  in  terms  of  payload  or  sensor integration. Several previous studies have explored the development of line follower robots. Ridarmin  et  al.  (2019)  proposed  a  prototype  utilizing  an  Arduino  Uno  and  TCRT5000 sensors for tracking a dark line, demonstrating basic autonomous navigation. Susilo (2018) introduced a prototype for automatic object delivery that incorporated a load cell sensor to determine the object’s weight and delivery destination, showcasing an early attempt at functional integration for logistics applications.

While  these  studies  laid the foundational  work,  challenges  remain  in  increasing navigation  accuracy,  improving  payload  handling,  and  optimizing  system  integration  for practical  use  cases.  This  study  aims  to  address  these  challenges  by  designing  and developing an autonomous line follower robot capable of transporting lightweight objects (up to 100 grams) along a fixed path. The proposed system integrates real-time navigation and load transport using an Arduino UNO microcontroller, BFD-1000 infrared sensors (as a more accurate alternative to TCRT5000), and an L298N motor driver for efficient motor control. 

The novelty of this work lies in its optimized design for power-efficient movement, enhanced  sensor  precision,  and  application  in  small-scale  logistics  environments to an area that remains under explored research. This approach is intended to contribute to the development of accessible and low-cost automation solutions for small and medium-sized enterprises (SMEs). The  development  of  smart  mobile  robots  based  on  line  follower  technology  has  been extensively studied and applied across various fields, particularly in logistics and healthcare industries.  This  technology  enables  robots  to  follow  predetermined  paths  using infrared sensors  that  detect  color  contrasts  between  the  line  and  the  background  surface. Mahendra  et  al.  (2019)  and  Hossain  et  al.  (2021)  demonstrated  that  line-following navigation systems offer high reliability in structured indoor environments and are relatively low-cost  to  implement.  In  the  context  of  object  transportation  automation,  this  approach has proven effective for tasks involving the delivery of goods or lightweight materials from one location to another without direct human involvement.

Beyond navigation  technology,  another  critical  aspect  of  such  robotic  systems  is  the ability  to  carry  or  push  objects.  Studies  by  Rathore  et  al.  (2019)  and  Kale  et  al.  (2020) discuss   the   design  of   actuators   and   robotic   mechanisms   to   lift   or   push   objects automatically. The integration of additional sensors, such as ultrasonic modules, has also been  explored  to  enhance  obstacle  detection  and  navigation  safety.  Recent  innovations even  incorporate  Internet  of  Things  (IoT)  connectivity,  as  discussed  in  Hossain  (2021), enabling  real-time  monitoring  and  control  of  the  robot.  Therefore,  a  line  follower-based robotic system equipped with object-handling capabilities presents a promising solution for efficient and adaptive internal transport automation.

Experimental Setup

In  this  study,  we design the  system  usingan  Arduino  UNO  microcontroller,  which functions  as  the  processor  for  both  incoming  and  outgoing  data.  The  components  are integrated into a single structural frame, including motorized wheels that serve as the base support  for  the  BFD-1000-linesensor,  which  is  responsible  for  detecting  the  navigation path.  The  frame  of  the  line  follower  robot  is  constructed  from  acrylic  material,  with  the robotic  arm  positioned  at  the  topmost  section  to  facilitate  efficient  object  pickup  and placement.  The  following  sections  present  the  system  block  diagram  and  the  workflow diagram of the object transfer robot based on line follower navigation.

The L298N driver is used to control both the rotational speed and direction of DC motors. It receives power from a 5V input, which can be supplied either through the 5V output of the microcontroller  or  from  a  step-down  voltage  regulator.  The  driver  receives  control signals from the microcontroller to determine whether the motor should move forward, turn, or  stop.  Additionally,  the  microcontroller  sends  speed  control  signals  based  on  the programmed instructions, allowing the motor to operate at the desired speed when moving forward or turning. 

The  BFD-1000  sensor  is  used  as  the  path  detection  component  for  the  line  follower robot.   A   total   of   five   BFD-1000-linesensors   are   employed   and   calibrated   using 
potentiometers. The calibration process is carried out to determine the appropriate infrared light intensity received by the photodiode sensor, enabling it to differentiate between high and low logic levels. This calibration is optimized for a sensor height of approximately 0.8 cm above the reflective surface.

Robotic Arm Design

The robotic arm is designed to assist in the picking and placing of objects. It utilizes four servo motors that function as the gripper and actuators for movement. The servo motors are  directly  connected  to  the  microcontroller  without  the  use  of  an  external  driver. The microcontroller sends control signals to the servo motors, instructing them on the direction and  angle  of  rotation,  thereby  enabling  the  robotic  arm  to  grasp  and  place  objects  as required.The  robotic  arm  is  assumed  to  consist  of nrevolute  joints  (rotary  joints),  each driven by a servo motor. The robot operates in a 2D or 3D environment. Each joint contributes an angular rotation denoted by θi, and each arm segment has a length Li.The base frame is fixed. For a planar 2D robotic arm, the end-effector position(x,y) is calculated using:





Download Full Paper

 

0 comments:

Post a Comment